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Abstract-—The growth pattern of a system of tension cracks in a linearly elastic brittle solid, may undergo
sbrupt changes, e.g. some cracks may stop or actually close, as others snap to finitely longer lengths. For the
growth regime of a system of straight edge cracks in plane strain, the concepts of fundamental equilibrium path,
mmmwmmmmmmmmwmmmm
behaviors are studied. In particular, it is shown that instabylities of this kind are highly imperfection-sensitive in
the sense that, for exampie, 2 small material inhomogeneity can decrease by a large amount the critical value of
the load parameter at which a growth regime abruptly changes to a new one. For thermally induced tension edge
cracks in an infinite strip of finite width, numerical results are presented and various aspects of the theory are
illustrated. For the calculation the new combined analytic and finite-clement solution method recently given by
the authors is employed.

1. INTRODUCTION

Tension cracks often form in brittle solids, because of a variety of mechanisms, such as
nonuniform shrinkage due to loss of moisture or due to creep deformation, nonuniform
temperature fields, radiation induced nonuniform volume changes and others. Mechanisms of
this kind are “strain-controlled,” in the sense that at each stage of crack growth, the total elastic
strain energy available to each crack is finite. Upon crack extension, the elastic energy is
released and therefore the crack growth is self-arresting.

However, in a suitable setting, two or several tension cracks may interact which may lead to
abrupt changes in their growth pattern. For example, as cracks grow with a continuous supply
of elastic energy (e.g. because of continuous loss of moisture or heat), a critical state may be
reached, where some cracks stop growing, as others grow at a faster rate. Another example of a
change in the growth pattern is when some cracks actually snap closed while others extend by a
finite amount. Unstable crack growth of this kind was first examined by Nemat-Nasser{1,2] and
with detailed calculations by Nemat-Nasser§ ef al.[3] and Keer ef al.[4]. Although a number of
interesting and essential features pertaining to this class of problems have been delineated in
the above references, several other key questions have been left unresolved. A question of
considerable practical improtance is the effect of small imperfections which are bound to exist
in real situations. As is now well-known, stability of many elastic structures is imperfection
sensitive, in the sense that small geometric or other imperfections may reduce by a large
amount the value of the critical load at which the structure becomes unstable. This has been
examined in a pioneering work by Von Karman and Tsien{6] and has since been thoroughly
explored both theoretically and experimentally by a number of other researchers; for
references and discussions, see Hutchinson and Koiter[7], Chilver(8] and Roorda[9]. We shall
show in this paper that for interacting tension cracks, also, small imperfections can sub-
stantially reduce the level of straining at which a crack growth pattern becomes unstable, In
fact, for the example used to illustrate the basic results, it turns out that a 3% imperfection in
material parameters reduces the critical value of the “load parameter” by more than 20%.
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¥The basic theory has been presented in an internal technical report by Keer ef al.{5].
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1018 S. NEMAT-NASSER ef al.

The theory is presented for a system of parallel edge cracks in plane strain, induced in an
elastic half-plane by the removal of heat at the free surface. This problem arises in con-
sideration of heat extraction from hot dry rock masses, a project which recently has been
initiated and to a large extent, successfully implemented at the Los Alamos Scientific Labora-
tory in New Mexico (for discussion and references, see Nemat-Nasser et al.[3, 10]).

This paper is orgasiped in the following manner. The basic problem used for illustration is
defined in Section 2. The theory is presented in Section 3, where the notions of fundamental
equilibrium path, stable and unstable bifurcation points, snap-through critical point and imper-
fection sensitivity are introduced. Numerical results are then presented in Section 4, for an
infinite strip of finite width containing equally spaced edge cracks at both edges and the entire
history of growth pattern of these cracks is traced to the point of failure at which some of the
cracks emanating from opposite edges run into each other, causing splitting of the strip into
pieces.

For the actual analysis it is possible to use a method similar to that employed in[3]. Here,
however, we shall use the novel analysis scheme recently proposed by the present authors[11]},
which combines analytical calculations with a finite-element approach, and which leads to a
rather effective solution procedure. For the sake of completeness, a brief summary of this
method is presented in Appendix A.

2. STATEMENT OF PROBLEM

In[3,4] an homogeneous isotropic elastic half-plane which is initially at a uniform tem-
perature, To, and is then continuously cooled at its free surface, has been considered. Because
of this cooling, a thermal boundary layer of thickness §, measured from the free surface along
its normal, develops in the solid. This may then lead to the formation of tension cracks
emanating perpendicularly from the free surface of the half-plane. The authors in[3, 4] confine
attention to a state of plane strain, assume a set of initially equally spaced edge-cracks and use
for illustration the following temperature profiles; see Fig. 1:

T=0 for 0sy=<él(n+1),

T=12‘-°[1-coswy—(ﬂ'-'-81l:-8-] for dl(n+1)=y=3$,
T=T, for 6=y, .1

where n =0.5 is used (see Fig. Ib); and

T =Toert [1‘8@] y =0, 22)

where erf (x) =—\/2-= j e ’du (see Fig. 1a).
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Fig. !. (a) Temperature profile eqn (2.2); (b) temperature profile eqn (2.1); (c) half-plane with equaily
spaced cracks.
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The temperature profile (2.2) corresponds to. the. case whare. the. solid has a uaiform initial
temperature T, and then its free surface y = 0is brought to aese temperatwee ot time ¢ = 0 and kept
zero theresfter, losing heat by conductive heat tramsfsr oply. In this case, it can be shown that
& = [tklpCH, where ¢ is time, k is the conductivity, p is the mass-density, and C is the heat capacity
of the solid. The tempusature profiie (2.1), on the otherhimd, attempts to inclede, in an approximate
manner, the effect of heat transfer by convection wihes hest is removed by means of water which
movesthrough the cracks. For application to geothermal energy extraction, the two profiles may be
regarded as limiting cases, and therefore useful for obtaining good estimates; see {10].

Initially, the cracks are all equal in length, and grow in a stable manner, as the thickness of
the thermal layer, 8, is increased; 8 is used as a measure of the load parameter. As long as the crack
spacing b is large compared with the common crack length h, there is very weak interaction
between adjacent cracks, and such a crack growth pattern is inherently stable. In this case, each
crack may be regarded as an isolated one and since for a fixed §, there is a fixed amount of elastic
energy available, an extension of a crack at constant § would release a certain amount of elastic
energy, which results in a reduction of the corresponding stress intensity factor at the crack tip, and
therefore crack growth will be arrested. If K is the stress mtensnty factor, then we have, in this case,
3K/oh <0; see Fig. 3 of [3].

As the common crack length increases with increasing & the interaction between adjacent
cracks becomes more important. In Fig. 2 two interacting cracks are shown in a unit cell, with
h, and h;, as their corresponding lengths, and K, and K the stress intensity factors; the critical
value of the stress intensity factor is K.. In[3] the following results have been obtained and
numerically illustrated.

The equilibrium regime
h| =hz and K] =K2=Kc (23)

is stable as long as

K, _ oK,

ok, 3k, <0, 24)
and it is unstable for

3K, _ K,

3h| - ah2 >01 (2.5)

the critical state corresponding to

oy ok @6)

When the critical state (2.6) is reached, one crack (say, crack 2) stops growing, as the other
«crack extends spontaneously (i.c. without change in ) by an infinitesimal amount. As the load

Fig. 2. A typical unit cell with two interacting cracks.
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parameter is increased, crack 2 remains stationary while crack 1 grows at a faster rate. During
this process, K, continues to decrease with increasing 5 and for temperature profile (2.1), it
actually becomes zero st a mew critical state, after which crack 2 snaps closed, while crack 1
extends by an additionsl:fnite amount.

In a recent work, Seusi #¢ al.[11] have shown that, before the critical state corresponding to
(2.6) is reached, there are infinitely many stable critical states, at each of which two distinct
crack growth patterns become possible: (1) equal crack growth regime defined by (2.3); and (2)
a crack growth regime corresponding to

dh, >0, dhz = 0, K) =K, Kz < K‘-, 2.7

i.e. one crack remaining stationary, as the other crack grows with increasing 8. These and
related results are discussed in the following section.

3. CRITICAL STATES AND POST-CRITICAL BEHAVIOR
3.1 Fundamental equilibrium path
Consider the h,, h,, 6-space; Fig. 3. The fundamental equilibrium path in this space is the
locus of points for which (2.3) holds. In Fig. 3 this is denoted by curve AB,B. Points on this
‘curve define equilibrium states, not all of which are stable.

3.2 Stable bifurcation points
When the common crack length, & = h, = h,, is smali relative to the crack spacing, the two cracks
in the unit cell of Fig. 2 have a weak interaction. In this case, if at constant h, and 8, h, is increased

34

>

h, N

Fig. 3. Various equilibrium states for two interacting cracks: B* is stable and B, an unstable bifurcation
point; B* and B. are snap-through critical points.
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by an infinitesimal amount, the stress field will be released at both crack tips, and therefore,
9K ,/ah, <0 and aK,/ah, <0. the weak interaction then implies that the stress is released more at
crack 1 than at crack 2, because of the extension of crack 1, while keeping 4, and 5 fixed. Hence, we
must have |dK,/ k| <|2K,/9k;|. For this regime we have

K, _oK, 9K, 3K;
o, ah,<ah, ", =<0, h, = h,. 3.1
The only possible crack extension regime then is defined by (2.3), namely the fundamental
equilibrium path.

To prove this assertion, first observe that since K, = K, (hy, ks, 8),

K, aK. aK,
dK,= ﬁ'dh ah, dh2+ —dé,
LKy 0Ky Q!Sz
dK, ok, dh'+ah dh,+ 5 dé. (3.2
Now, for d5 >0 and dh, >0, i.c. dK, =0, obtain
__{9K,; K, ) K,
ds = (ah. ahy+ 58 aha) 1 20, (3.3)
and, upon substitution into (3.2),, arrive at
K, K )( dh; )
dx,-( -2 (1-32) a, G4)

where, since h, = hy, and since there is complete symmetry in this case, condition 3K,/aé =
aK,/a8 is used.

For dh, = dh,, (3.4) yields dK, =0, and hence K, = K_: the state remains on the fundamental
equilibrium path. Suppose now, dh; # dh,, and assume dh,>dh,. Then from (3.1) and (3.4) it
follows that dK, <0, and hence dh, must be equal to zero, which is a contradiction. Moreover,
if we assume 0 dh, <dh,, we obtain dK, >0, which is impossible, since K, cannot exceed its
critical value K. Hence, as long as (3.1) holds, incremental crack extension satisfies dh, = dh,,
and the state remains on the fundamental equilibrium path AB.

As the two cracks in Fig. 2 grow with increasing §, their interaction becomes more important
and when their common length is large enough, then a point may be reached at which, with h;
and § kept constant, an infinitesimal extension of crack 1 decreases the stress intensity factors
at crack 2 and crack 1 by an equal amount. This defines a critical point on the fundamental
equilibrium path. It is a stable bifurcation point, and is characterized by the condition

K, _dK,_oK,_iK,
Tk 3k <O m=h 33)

To see that the state associated with (3.5) is indeed critical, observe that equilibrium requires
dK, = dK, =0 for d5 >0, and hence (3.2) yields

= (G- ) o () - G}

dhz = (-?:-lz a:: l a:’f: 2&) dﬂ{ (0’!1 )2 (%%zl)z} ) (3.6)

Therefore uniqueness is lost when (3.5) is satisfied. On the fundamental equilibrium path in Fig.
3, this point is denoted by B*. On this same path, points above B* (but below B,) satisfy the
following conditions:

SS Vol. 16, No. 11—E
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K, 9K, oK, 0K, _
0> R =3k oy =gk M= S
and hence correspond to stable states. However, each one of these points defines a stable
bifurcation point from which another equilibrium path emanates.

In the immediate neighborhood of the fundamental path, these bifurcated paths characterize
states with smaller total stored elastic energy per unit cell, and hence define more stable states
than the corresponding ones (for the same §) on the fundamental equilibrium path. We shall
prove this assertion in the sequel, but first we shall show the existence of these stable
bifurcated equilibrium paths.

To this end consider a typical point on the fundamental equilibrium path above B*, say, point
B, in Fig. 3. At this point, conditions (3.7) hold. Consider now an increase in the load
parameter, dé >0. If equal crack growth is assumed, then point B, on the fundamental
equilibrium path will be attained and we will have

h\(B2) = hy(B;) = hy(B)) +dh, = hy(B,) + dh,,
dh, = dh2 >0, dK| = dKz =(, Kl(Bz) = Kz(Bz) =K,; (3.8)

here h\(B,), for example, denotes the length of crack 1 at the state corresponding to B,.

In addition to the equilibrium state (3.8), conditions (3.7) and (3.4) reveal that another
equilibrium state with, say, dh; =0 is now possible, because in this case, dK,<0. This new
equilibrium state is denoted by B% in Fig. 3. It is characterized by

hy(B%) = h(B))+dht, ho(B%) = ho(B) = hi(B)),
dh%>0,dh%=0,dK,=0,dK,<0, K (B%) = K., K:(B¥) <K.. (3.9

Both states, B, and B%, which correspond to the same value of the load parameter, § =
8(B,) + db,, are stable; here, d8, is a fixed load increment. But as we shall show below, state B%
on the bifurcated path corresponds to a smaller stored elastic energy, and therefore is more
stable.t

To this end we observe that if there are no cracks in the solid, the total stored elastic energy
per unit cell (and per unit thickness in the direction normal to Fig. 1) is a finite quantity
proportional to the thickness of the thermal layer, 8. This is because the temperature profiles
(2.1) and (2.2) involve only y/8 and therefore integration of the elastic energy density over a unit
cell would always lead to a quantity of the following kind:

€(8) = A8, (3.10)
where A is independent of 5, but depends on material parameters, total temperature drop, and

the shape of the temperature profile. For profile (2.1), for example, we have (in plane strain,
with the free surfacet)

l»o

‘zToEb
48 (-’

A= @3.11

and if we approximate the temperature profile (2.2) by T = To[t — (1 ~ y/8)], then we obtain
222

1 & Tokb G.12)

It is clear that in the present context other reasonable temperature profiles would always lead to

The fact that the state with smaller stored elastic energy is more stable follows from Gibbs’ statement of second law of
s for the spplication of this to fracture problems, see Nemat-Nasser[12, 13).
tWithoutthefreesurfaoe (1 - ») must be replaced with (1 -24). & is then measured from the center, along the crack.
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an expression similar to (3.10), with A depending on the shape of the temperature profile, but
not on 4.

When cracks exist, part of the total elastic energy given by (3.10) is used to generate crack
surfaces, and the remaining part is stored in the body,

€=8,+S, (3.13)

where €, is the stored elastic energy per unit cell and S is the corresponding surface energy.
Since for a fixed & the total supplied energy € is fixed, the state with larger total surface energy
will have smaller stored elastic energy. Therefore, to prove that state B3 is more stable than B;,
we shall show that S(B%) > S(B,). However, since -

S(By) = S(B\)+2dh, +dhy)y, dh, = dh,,
S(B%)= S(B,)+2dhty,dh3 =0, (3.149)
to prove our assertion, we need only show that
(dh, + dhy) = 2dh, > dht; (3.15)

in (3.14) y is surface energy per unit area and relates to the critical value of the stress intensity
factor by K2=2yE/(1-»?), where v is the Poisson ratio and E Young’s modulus.

To prove (3.15), we recall that the load parameter at both states, B, and B%, has the value
5(B,) = 8(B%) = 5(B,) + dy, where d5, is fixed. It then follows that

Ky, K
% d&= %5 dé, at B, (3.16)

for point B, on the fundamental path, dh, = dh, and we obtain from eqn (3.2),

__9K, (?5_1 25_')
dh; = —as-d&./ ah,+ah2 . 3.17

For point B3, on the other hand, dh% = 0. Equations (3.2) then yield

_ 9Ky 4o 9K,
dht 35 walu' (3.18)

Now, in view of (3.7), we have dht > 2dh, which is (3.15). Note that in expressions (3.16)~(3.18)
the partial derivatives are all evaluated at state B,, for which h, = h,.

The fact that the state on the bifurcated path is more stable than the corresponding one on the
fundamental path, may be proved in a different but equivalent manner. For this, one may
consider two ncighboring states and instead of fixing the load parameter, one chooses these
two neighboring states in such a manner that they correspond to the same total surface energy.
Then the state with smaller stored elastic energy would involve smaller total energy and
therefore, would correspond to a smaller load parameter. Hence, it will be the one which
actually will be attained. If the two neighboring states, B; and B%, one on the fundamental
equilibrium path and the other on the bifurcated path, have the same surface energy, we must

have, for the corresponding incremental crack lengths, dh, =dh, = idht, and dh%=0. Then
from (3.10) and (3.13) we obtain

5,080 - 8,80 = A ~2(41) + (3504 2R1) 20 Jan, .19

which, in view of (3.7), yields
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zs (é ’) < 8: (B 2) ’ (3 .M)

as required. Note that the actual states corresponding to a prescribed fixed ioad parameter may
not be the same as those corresponding to a fixed surface energy.
To the second-order approximation used in arriving at (3.15), the two surface energies, one

corresponding to a neighboring point on the fundamental path and the other to a point on the
bifurcated path, would be equal at point B*, i.e. we have

dh¥ =2dh, at B*. (3.21)

However, if the higher-order terms are used, a conclusion similar to (3.15) will again be reached.
We have circumvented the need for such a tedious consideration, by examining states in the
neighborhood of point B; for which the strict inequality (3.7) holds; note that at point B*
conditions (3.5) hold.

3.3 Post-critical response

As discussed above, at the state corresponding to point B*, every other crack in the array of
cracks shown in Fig. 1 stops, as the remaining ones grow with increasing load parameter 5 and
at a rate initially twice as fast as before; this latter assertion follows from eqn (3.21). To examine

the growth regime pattern after point B*, we must consider three interacting cracks shown in
Fig. 4, for which

h| = h;, hz = hz(B‘) = constant, K| = K3 = Kc, Kz < Kc. (3.22)

However, since the spacing between cracks 1 and 3 in Fig. 4 is equal to 2b, the corresponding
initial interaction is weak. In fact, as it has been shown in[4], all the essential features of the
crack growth regime after the bifurcation point can be established quantitatively with almost no
loss in accuracy by considering only two interacting cracks for the present problem. Hence we
shall pursue this approximation below.

On the bifurcated path B*B* we have the following numerical results for temperature profile
{2.1); for illustration we shall use this temperature profile:

oKy, 3K
dK, = oh, dh, + 35 dé <0. (3.23)

Hence, the stress intensity factor K, continues to decrease with increasing § and h,. At point
B* the stress intensity factor K, is zero, and a further increase in the load parameter results in
the closure of crack 2. At this point and for temperature profile (2.1), calcuiations show that
crack 2 snaps closed while crack 1 snaps into a finitely longer length, for infinitesimally larger
values of the load parameter §; this is illustrated in the next section. Hence point B} defines a

) e

(7]

30

i ——————— o = n =]

Fig. 4. A. unit cell with three unequal cracks: Crack 2 will involve both Model I and II.
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snap-through critical state. In the infinitesimally small neighborhood of this state, there are no
equilibrium states corresponding to (infinitesimal) d5 > 0.

From the relation between the energy release rate and the stress intensity factor in Mode I, it
has been shown in[3] that

3Ky _ o 3Ky
K, o, K, o, 3.24)
Since at point B* we have K, =0, this point is characterized by
K _
oy 0. (3.29)

Actually, since 3K,/ah; is in general non-positive, if this quantity is plotted as a function of h,,
the curve would be tangent to the h-axis at the critical point defined by (3.25); see Nemat-
Nasser et al.[3].

For some other temperature profiles, ¢.g. (2.2), it happens that K, never reaches zero. In this
case, crack 1 and 3 of Fig. 4 begin to have significant interaction, and one of them stops at a
certain stable. bifurcation point before the stress intensity factor at crack 2 can reach zero
value, For cases of this kind there is no crack closure. This has been illustrated in{3] for
temperature profile (2.2).

3.4 Effect of small imperfections

In the preceding discussions we consider idealized cases where the cracks are equally spaced
and the material properties are homogeneous. This cannot exist in actual situations and there are
always some imperfections present. It is known in structural analysis that even very small
imperfections may introduce substantial reduction in the critical value of the load parameter at
which the structure becomes unstable. It turns out that a similar role is played by small
imperfections in the stability of a system of interacting tension cracks. The imperfection in the
present case may be a small deviation from an equaily spaced crack pattern (i.e. unequal crack
spacing), or it may be small nonhomogeneity in material properties, e.g. the critical value or the
stress intensity factor at one crack may exceed by a small amount that at the other crack in the unit
cell of Fig. 2.

When the cracks are unequally spaced, then both Modes I and II will be involved and this
will complicate the calculations substantially. On the other hand, when equal spacing is used,
but different values are assigned to the critical stress intensity factor at the two cracks within a
unit cell, the effect of imperfection can be studied without additional elaborate computations.
For the purpose of illustration we shall give numerical examples in Section 4, using the latter
type of imperfection.

To discuss the effect of imperfection, it is convenient to introduce the notation

u=h|—hz

which measures deviation from the fundamental equilibrium path. Hence, in the u, 8-plane the
fundamental equilibriven path coincides with the 8-axis; see Fig. 5(a). At point B*, condition
(3.5) is first satisfied, and hence, this is a stable bifurcation point, At point B,, critical condition (2.6)
holds, and hence, this is an unstable bifurcation point. All points above B, on the 3-axis in Fig. 5(a)
are unstable bifurcation points; at these points, the bifurcated equilibrium path kas a negative
slope, the siope being zero at B, All points on the 3-axis between B*® and By, are stable bifurcation
points.

The path B*B? in the &, 5-plane is the bifurcated path on which h, = hy(B*) = constant,
K;<K., and, as we discussed before, this is the path that actually will be followed in the
absence of any imperfection.

Assume now that the critical stress intensity factor at crack 1 is K., but that at crack 2 is
K.+ K., where £ €1, ¢.g. ¢ = few percent. Then, as § is increased, crack 2 will have a shorter
length than crack 1 (see Fig. 5b), and therefore, ¥ as a function of § will follow a path similar
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Fig. 5. Post-critical response and the effect of imperfection.

to that sketched in Fig. 5(a) by curve ab,. At a certain point, say, b* (Fig. 5a), on this curve,
crack 2 stops growing, and crack 1 then continues to grow at a faster rate; the corresponding
point, on curve 1 is denoted by b% and that on curve 2 by b% in Fig. 5(0). For a certain
temperature profile, e.g. (2.1), the stress intensity factor at crack 2 reaches zero at point b, in
Fig. 5(a), after which crack 2 snaps closed as crack 1 extends by a finite amount. At this point, u
increases by a large finite value. The crack spacing is then doubled, and the whole process
repeats itseif.

To give an analytic description of some of the above behaviors, one may use a perturbation
approach as follows.

The crack lengths for nonzero ¢ are functions of this parameter, b, = hi{e), i = 1, 2, so are the
stress intensity factors K; = Ki(h,, hy; 8, £). Hence, for fixed § we may write

hi(e) = hy(0)+ Ahy, hy(e) = hy(0) + Ah,, 3.26)
and
Kie)=K. + ‘gf‘ 3Ky oy, + 3K ‘gf' Ah, =K.,
Koe)=K. +K2pp 13K pp _ g 4ok, 3.27)
ah, At g

where on the fundamental path, 5,(0) = h{0) and K, = K; =K. In egns (3.26) and (3.27) all
partial derivatives are evaluated on the fundamental equilibrium path, i.c. at ¢ =0. Further-
more, it is assumed that the deviations from the fundamental path, denoted by Ak, and Ah,, are
small; equs (3.27) apply to points below critical point b* in Fig. 5(a).

Equations (3.27) can be solved for Ah, and Ah,, and since on the fundamental equilibrium
path 3K ,/dh, = 3K,/8hy <0 and daK,/ahy = aK,foh; <0, we obtain

=[S G -G e

{2 -
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where, since the derivatives in (3.28) are calculated below the stable bifurcation point B* of
Fig. 3, conditions (3.1) are valid and hence,

R

As long as D is a relatively large finite quantity, |Ak;| remains of the order of ¢, as shown by
(3.28). As we increase 5, the positive quantity D tends to decrease, becoming zero at the stable
bifurcation point B*. Hence, the deviation from the fundamental equilibrium path, charac-
terized by

u = hi(e)— ho(e) = Ah,— Ah,

- aK. ax,]
”K°[ah /D

- ek (K20
eK”(ah, an, )’

tends to increase with increasing §; approximation (3.30) is valid only for points below the
critical point b* in Fig. 5(a) which correspond to points b and b$ in Fig. S(b).

For a fixed value of imperfection, € = ¢, and for § < §*, consider an increment in the load
parameter, d5 >0, and calculate the corresponding increase in crack lengths, dh, on curve (1)
and dh, on curve (2), of Fig. 5(b). Since the new state must be in equilibrium, we have

(3.30)

K, ., . K,
o, Mt S,

K, K, K,
9, a—dh + ah, i dhy+—3 % dé =0, (3.31)

Ky .
S dh+52d5 =0,

where the partial derivatives are calculated on curves (1) and (2). Note that, unlike the
corresponding expressions in eqns (3.2), here dK,/ah, # K,/oh,, 9K ,/oh, # 3K,/dh,, and
0K,/95# 3K,08. We now solve (3.31), and obtain

dhy _ [3K,2K, _3K,3K,] 10K 3K, 3Ky 2K,] a3
dh, Loh, a6 oh, 36 oh, 38 oh, 35 ’
At point b3, dh, =0 and hence, this state is characterized by

3K, 9K, 9K, 3K,

oh, 9 Ohy 98 O (3.33)

In the absence of imperfection, (3.33) reduces to the critical condition defined by (3.5).

Equation (3.24) remains valid provided that the quantites are evaluated at & = &, and for h,
and h,, given by the corresponding points on curves (1) and (2). Hence, (3,25) defines the
snap-through critical point b, in Fig. 5(a).

3.5 Summary of basic results
For the two interacting cracks shown in Fig. 2, the fundamental equilibrium path is defined by

h,=h,, K,=K;=K.. (3.34)
The fundamental equilibrium path will be followed as long as

aK aK aK 3Kz
o ok = ok <O (3.35)
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The first critical point is a stable bifurcation point attained when

oK, _ oK, K, _oK; _

oh, ~ ok, oh, ok, (3.36)
All points on the fundamental equilibrium path for which

oK, oK. aKs _ ok
0>, = oy ok, ~ o, 337

holds, are stable bifurcation points. The unstable bifurcation point is first reached when

2__. K, _ 2__ K, _ 0
3h| ahz ) (338)
All points on the fundamental equlhbnum path for which

oK, _ ik,
ah, ok, 0 (3.39)

holds, are unstable bifurcation points. In all cases we always have on the fundamental equili-
brium path,

oK, _3K; o
3y~ o, <{; (3.40)

this has been proved elsewhere, [3]. On the bifurcated path, on the other hand, K; # K; and,
instead of (3.40), we have

K, oK
K| ahz —Kz ah| =0, (3.41)

the equality sign corresponding to the snap-through instability point at which, say, K, =0 and
hence, crack 2 snaps closed as crack 1 extends by a finite amount,

The introduction of a very small material imperfection results in deviation of the equili-
brium path from the fundamental equilibrium path for all finite values of § and this deviation
increases with increasing 8. Along the new equilibrium paths, the crack with the larger value of
the critical stress intensity factor, say crack 2, stops at the critical state defined by

9K, 3K, 9K\ 3K, _,, (3.42)

After this, crack 1 continues to grow with increasing 3, until the snap-through critical state
defined by '

oK, _
o, 0. (3.43)
is reached. An infinitesimal increase in & then results in a snap closure of crack 2, as crack 1
extends by a finite amount.

4 NUMERICAL RESULTS
In this section the theory is illustrated by means of numerical examples. Consider an infinite
strip of finite width 2L, containing equally spaced edge cracks at both its edges; see Fig. 6. We
shall examine the growth.regime of these cracks for both temperature profiles (2.1) and (2.2). To
associate our results with those presented in [3,4,11], we choose the critical value of the stress
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Fig. 6. A strip with periodically spaced edge cracks.

intensity factor att
K. =0068ToV27L, B =aE/(1-v), @.1
and introduce the following non-dimensional quantities:

Cm = hmlL9 Fm = KJﬁTo V WL,

oFp _

5o (L= )TVAIL, ma=12. 42)

oh,

4.1 Temperature profile (2.1)

To obtain the fundamental equilibrium path, we choose (arbitrarily) the initial crack spacing
such that b/L =0.16. Then for each value of the load parameter 5, we calculate h; = h, such
that K, = K, = K.. In Fig. 7 curve AB is obtained in this manner. For states corresponding to
the AB* portion of this path, aF,/dC, = aF;/aC, < 3F,/C, = aF,/3C, <0, the equality sign cor-
responding to the stable bifurcation point B*. Although states between B* and B, on this path
are stable, another stable equilibrium path emanates form each of these points. Correct to about
1%, the stable bifurcation point B* is defined by 5/L =0.315 and C, = C,=0.274; this crack
length is less than half of the crack length pertaining to the unstable critical point B, obtained
in [3, 11).

After point B*, crack 2 ceases to grow, while crack 1 continues to extend, as § is increased. As is
shown in Fig. 7 the growth rate is initially twice as fast as that on the fundamental equilibrium path.

This leads to the stable branch B*B* on which aF,/aC, <0. Along this branch, F,, as well as
|aF,/aC3|, continue to decrease monotonically with increasing 3, as shown in Fig. 8, attaining zero
when3/L = 0.420and C, = 0.387. At this point, The changes in the stress intensity factors are given
by

dFl =-1.571 dC, -0.007 dC; +1.596 d(dL),
dF,=-0.173dC, +0.956 dC, — 0.645 &(& L). 43)

Since F, = KJBT,VwL,and F; =0 at this point, the only admissible change is such that dF, <0

tin[3,4), 5 has been incorvectly given as 34E/(1 ~ 2v). The results which are all in dimensioniess form, are not however,
affected by this.
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Fig. 7. 8,h;-space temperature profile eqn (2.1).
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Fig. 8. Stress intensity factors and their derivatives with respect to crack lengths; b/L =0.16.

and dF; = 0. These relations imply
d(6/L)<0, dC,=0, dC,=0.674d(8/L)<0. 4.4)

Hence we have a snap-through critical state at which crack 2 closes and crack 1 extends by a small
but finite amount. The crack spacing is then doubled, b/L =0.32.

Branch A1B% in Fig. 7 corresponds to the state in which every other crack is closed. This
new state is stable, since aF,/aC, = aF:/C, < aF,/9C, = aF,/aC, <0. A stable bifurcation occurs
at the point Bt where 5L = 1.064 and C, = C, = 0.946. After this point, crack 2 ceases to grow and
a process similar to that described above may be expected. However, since the strip has a finite
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width, another critical point, D,, will be attained, where 8/L = 1.077, C, = 0.977, anddF,/3C, =
d8/dh, = 0. The final fracture of the strip occurs at D,, where cracks from the opposite sides of
the strip join spontaneously. If the initial crack spacing is larger than b/L = (.32, then one stable
bifurcation point with the consequent fracture of the strip is encountered. Numerical resuits for
b/L =0.64 and 1.28 are also shown in Fig. 7. As an extreme case the results for b/L = is
calculated by the simple integration given in Appendix C. In this case, the stable bifurcation
point B* does not exist, and the critical point D. corresponds to 8/L = 0.065 and C, =0.72.

Consider now the effect of small imperfections. To this end let the critical value of the stress
intensity factor at crack 1 be given by (4.1) and that at crack 2 by K¢ + ¢K,. For ¢ =0.03 and
0.09 the corresponding crack growth regimes are shown in Fig. 9. Crack 1 which has a smaller
critical value of the stress intensity factor, grows at a faster rate than crack 2. Crack 2 stops at
point b*, while crack 1 continues to grow with increasing 3, until point 4% at which it snaps into
the new branch A;B,, while crack 2 snaps closed. For £ =0.03 we have §(b*)/L =0.238,
hy(b*)/L =0.214 and hy(b*)/L =0.200, whereas for ¢ =0.09 the corresponding quantities are
0.193, 0.177 and 0.160. The snap-through occurs for & = 0.03 at 5(b,)/L = 0.324, h,(b,)/L = 0.306
and for £ = 0.09 at respective values of 0.274 and 0.261.

4.2 Temperature profile (2.2)

. For this temperature profile the results are given in Fig. 10. Curves AB and A,B; are the
fundamental paths for b/L =0.32 and 0.64, respectively. On these curves B* and Bf are the
corresponding stable bifurcation points. At B* crack 2 stops, while crack 1 grows at a faster
rate, forming a bifurcated path which approaches the second fundamental path A, B, close to
the latter’s stable bifurcation point BY. In this case, however, no crack closure occurs. In{4] it
has been shown that even if three interacting cracks are considered, Fig. 4, still no crack
closure is predicted and while the stress intensity factor at crack 2 is still finite, cracks 1 and 3

A 1
Yo 0z o L -y

Fig. 9. Crack growth regime for two interacting cracks in a unit cell; temperature profiie eqn (2.1).
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Fig. 10. Crack growth regime for two interacting cracks in a unit cell; temperature profile egn (2.2).

become highly interactive and in fact, one of them stops growing as the other continues to grow
at a faster rate; see[4] for further discussion.

We have also examined the effect of initial imperfection in the crack growth regime for
temperature profile (2.2). Figure 10 shows the results for ¢ =0.07. In this figure, 5(b*)/L =

0.168, hy(b*)/L = 0.102 and h,(b*)/L = 0.070. Note that 5(b*)/L is more than 25% smalier than
8(B¥)/L =0.221.
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APPENDIX A
Method of analysis
Let V denote the region occupied by the elastic body. In the absence of body forces, the field equations are,
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oy =0inV,
o =LonsS, (AD
y=i oS,
where comma followed by an index denoics partia) difforentistion with respect lo the corresponding cordinate, the

-maumumdadn,m&mmofdnemuthwthe

,'(Xh - HZ) = ov

tx),~bf2)= - (T - To),0=x,sh;; (A2
‘l(xlv blz) = o;
te(x1,012) = B(T - Ty), 0 x, 5 hy; (A3)

where f = GEJ(1-»), d being the coefficient of thermal expansion.t
mw[Ianummmmmm(h..mmmmma/Lmsucha
manner that the stress inteasity factors of each growing crack maimtain its critical value. Then we calculate the derivatives
of the stress intensity factors, 9K..Joh., for the purpose of stability analysis.
The dominant terms of stresses around the mth crack tip can be represented in the following form:

o = 0170 (T, O) + G50, O) + B F (P, Bn) + DI 5} (7im, 0) + O(r2), (Ad)
} =
- - y .
le—n, __.l
—_— b
b/2

b/2

DAY YR — )

()

e
‘}_' _ _"_3_ _ _' ap*0
"'o "ﬂ' “!'o
T2 proscrived
o] &
¢ %2 w A
X
& o/z".o Lz
l 22 rowrioed 8, 40
iy i R

1)
Fig. Al (a) Typical unit ceil consisting of two interacting edge cracks; (b) The basic elasticity boundary-
value problem.

tin(3, 4], § has been incorrectly given as 3GE/(1 ~ 2»). The results which are all in dimensionless form, are not however,
affected by this.
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whm (7w, 8} is @ local polar coordinate whose origin is located at the mth crack tip and o§{7m, Om) and G{(rm, 8n),

k=12, are given in Appendix B. The coefficients b{™’ and bY"’ can easily be determined as the Taylor expansion
coefficients of applied tractions at the mth crack tip, while '™ and a%™’ are determined by the method of superposition of
analytical and finite-element solutions[11,14,15). The stress intensity factor K, is expressed as

Km =¥‘—2-3'-a‘."", (A.5)

and the load parameter & is so determined that K. equals the critical value at the growing crack tip.
deﬂmMeeqn(Al)mthrespecttoﬂtecmklewhk..thesdmdlhem acJah.,uounnedas

ooy + (B3 o)y (-
sl _ 2aha$+(ah,, 38 &’) "+(ah,. »g»)&“o(,,ﬂ) form=n,
a w
- aa +a:,:" G5 +00rw’) form#n, wo

near the mth crack tip, where ¢ has a singularity of 0(r;>?) as shown in Appendix B. Here we define new variables,

doy +% at"o},

U.q"ah.
Mni =3;:+§a‘u"’u?.n =12, (A
where u? represents the displacement field corresponding to the stress field o These variables are chosen in such a

manner that the singularity of the order r,."2 is removed from the derivative problem. With the aid of (A.7), and upon
differentiation of (A.1) with respect to h,, we write

0’.,'”_2‘1‘-)0'%"=0 inV,

Tty = ah,. a‘{‘ )an) onS,
i 3 (3
Uni —:%-ha‘. "l onS,.n=12. (A.8)

The stress distribution around the mth crack tip can be expressed in the same manner as (A.4); here, this becomes

aby™
hn

The unknown coefficients a3’ k, m, n =1, 2, can be determined by the same method used for the analysis of stress
intensity factors. Comparing (A.6) and (A.9), the derivatives of the stress intensity factors are obtained as

O nij = Qat Uay(rmv Om)+ ﬂa"z"dd('m Om)+ ( 3b5’") Gy +0(rm). (A9)

K _ 3\/}—‘"— (ai.".’+%a¥") form =n,
W
3\/27 ——a® form#n. (A.10)
APPENDIXB

Various stress fields used in Appendix A, are summarized below.

2co8(0m/2) - 3 sin O Sin(56m/2), i=j=1,
ol =~ 4= { 2c08(62) + 3 sin O in(50n/2), i=j=2,
33in 0 cOS(S0/2),i = 1,j=2; i=2,j=1. B.1)

1-sin{0./2) sin(30n/2), i=j=1,
aq=.r..."‘eow..l2) 1+ sin(0/2) 8in(30,/2) ,i=]=2,
sin(0./2) cos(30n2), i=1,j=2i=2,j=1 (B.2)

l+sm2(0-,2)1 i'_‘i:l:
o =4l cos(8w/2) 1-5in"(0u12), i=j=2,

—sin(Bnf2) cos(@uf2),i=1, j=2;i=2j=1. (B.3)
2+constant, i=j=1,

Gi(rmiOm) = $ 2, i=j=2,
0, i#]. (B4

rm COSOm, i=j=1,
5?}(’:-1 Om) = < 6Fm COS O, i=i=2’
=6 5in 6, i#]. (B.5)
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APPENDIXC
Symmetric edge cracks in a strip

According to Tada[16}, the stress intensity factor of the cracks shown in Fig. C1 can be expressed as

x = 20 (B[ Peof1+ remrcor (2 }[l T

where
1.0 for0sésén+1),
P =BT {10+eos (f‘—"—‘;—;’—‘—‘)} for8l(n + ) <¢ <5,
00 for £ >5,
and

F(&h)=1.30 - 0.6(g/RY + 0.3%(¢E/h).

()]

1035

.n

€2

(€3

Nusmerical calculations are performed to obtain the relations between crack length h and the penetration depth 3, such

that K = K. at the crack tip and the results are shown in Fig. 7.

Fig. C1. Infinite strip with symmetric edge cracks.



